d = MOD13A1$dt %>% subset(site == "CA-NS6" & date >= "2010-01-01" & date <= "2016-12-31") %>%
.[, .(date, y = EVI/1e4, DayOfYear, QC = SummaryQA)]
d %<>% mutate(t = getRealDate(date, DayOfYear)) %>%
cbind(d[, as.list(qc_summary(QC, wmin = 0.2, wmid = 0.5, wmax = 0.8))]) %>%
.[, .(date, t, y, QC_flag, w)]
print(d)
#> date t y QC_flag w
#> <Date> <Date> <num> <fctr> <num>
#> 1: 2010-01-01 2010-01-08 0.1531 snow 0.2
#> 2: 2010-01-17 2010-01-25 0.1196 snow 0.2
#> 3: 2010-02-02 2010-02-13 0.1637 snow 0.2
#> 4: 2010-02-18 2010-02-25 0.1301 snow 0.2
#> 5: 2010-03-06 2010-03-21 0.1076 snow 0.2
#> ---
#> 157: 2016-10-15 2016-10-23 0.1272 snow 0.2
#> 158: 2016-10-31 2016-11-07 0.1773 snow 0.2
#> 159: 2016-11-16 2016-11-25 0.0711 cloud 0.2
#> 160: 2016-12-02 2016-12-12 0.1372 snow 0.2
#> 161: 2016-12-18 2017-01-02 0.1075 snow 0.2
date
: image date t
: composite date
QC_flag
and date
are optional.
lambda <- 8
nptperyear <- 23
minExtendMonth <- 0.5
maxExtendMonth <- 1
minPercValid <- 0
wFUN <- wTSM # wBisquare
wmin <- 0.2
methods_fine <- c("AG", "Zhang", "Beck", "Elmore", "Gu")
Simply treating calendar year as a complete growing season will
induce a considerable error for phenology extraction. A simple growing
season dividing method was proposed in phenofit
.
The growing season dividing method rely on heavily in Whittaker smoother.
Procedures of initial weight, growing season dividing, curve fitting, and phenology extraction are conducted separately.
INPUT <- check_input(d$t, d$y, d$w,
QC_flag = d$QC_flag,
nptperyear = nptperyear,
maxgap = nptperyear / 4, wmin = 0.2
)
brks <- season_mov(INPUT,
list(FUN = "smooth_wWHIT", wFUN = wFUN,
maxExtendMonth = 3,
wmin = wmin, r_min = 0.1
))
# plot_season(INPUT, brks)
## 2.4 Curve fitting
fit <- curvefits(INPUT, brks,
list(
methods = methods_fine, # ,"klos",, 'Gu'
wFUN = wFUN,
iters = 2,
wmin = wmin,
# constrain = FALSE,
nextend = 2,
maxExtendMonth = maxExtendMonth, minExtendMonth = minExtendMonth,
minPercValid = minPercValid
))
## check the curve fitting parameters
l_param <- get_param(fit)
print(l_param$Beck)
#> # A tibble: 7 × 7
#> flag mn mx sos rsp eos rau
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 2010_1 0.191 0.538 3808. 0.0826 3894. 0.0432
#> 2 2011_1 0.194 0.477 4180. 0.113 4274. 0.113
#> 3 2012_1 0.189 0.514 4542. 0.196 4643. 0.0864
#> 4 2013_1 0.190 0.493 4903. 0.190 5011. 0.0672
#> 5 2014_1 0.198 0.494 5276. 0.122 5375. 0.289
#> 6 2015_1 0.212 0.493 5639. 0.142 5726. 0.169
#> 7 2016_1 0.198 0.501 6002. 0.186 6095. 0.0731
dfit <- get_fitting(fit)
#> Warning in merge.data.table(x$data[Ix], df, id = "t"): Unknown argument 'id'
#> has been passed.
#> Warning in merge.data.table(x$data[Ix], df, id = "t"): Unknown argument 'id'
#> has been passed.
#> Warning in merge.data.table(x$data[Ix], df, id = "t"): Unknown argument 'id'
#> has been passed.
#> Warning in merge.data.table(x$data[Ix], df, id = "t"): Unknown argument 'id'
#> has been passed.
#> Warning in merge.data.table(x$data[Ix], df, id = "t"): Unknown argument 'id'
#> has been passed.
#> Warning in merge.data.table(x$data[Ix], df, id = "t"): Unknown argument 'id'
#> has been passed.
#> Warning in merge.data.table(x$data[Ix], df, id = "t"): Unknown argument 'id'
#> has been passed.
print(dfit)
#> flag t y QC_flag meth ziter1 ziter2
#> <char> <Date> <num> <fctr> <char> <num> <num>
#> 1: 2010_1 2010-01-25 0.1196 snow AG 0.1888598 0.1903677
#> 2: 2010_1 2010-01-25 0.1196 snow Zhang 0.1881071 0.1897593
#> 3: 2010_1 2010-01-25 0.1196 snow Beck 0.1888971 0.1906256
#> 4: 2010_1 2010-01-25 0.1196 snow Elmore 0.1882156 0.1906010
#> 5: 2010_1 2010-01-25 0.1196 snow Gu 0.1877055 0.1882123
#> ---
#> 761: 2016_1 2016-12-12 0.1372 snow AG 0.1933491 0.1963926
#> 762: 2016_1 2016-12-12 0.1372 snow Zhang 0.1939335 0.1981793
#> 763: 2016_1 2016-12-12 0.1372 snow Beck 0.1940403 0.1985395
#> 764: 2016_1 2016-12-12 0.1372 snow Elmore 0.1941100 0.1986073
#> 765: 2016_1 2016-12-12 0.1372 snow Gu 0.1872110 0.1872110
## 2.5 Extract phenology
TRS <- c(0.1, 0.2, 0.5)
l_pheno <- get_pheno(fit, TRS = TRS, IsPlot = FALSE) # %>% map(~melt_list(., "meth"))
print(l_pheno$doy$Beck)
#> flag origin TRS1.sos TRS1.eos TRS2.sos TRS2.eos TRS5.sos TRS5.eos
#> <char> <Date> <num> <num> <num> <num> <num> <num>
#> 1: 2010_1 2010-01-01 126 300 137 280 154 248
#> 2: 2011_1 2011-01-01 143 278 151 270 163 257
#> 3: 2012_1 2012-01-01 148 288 153 277 160 261
#> 4: 2013_1 2013-01-01 142 298 147 284 154 262
#> 5: 2014_1 2014-01-01 143 271 151 267 163 262
#> 6: 2015_1 2015-01-01 144 262 150 256 161 248
#> 7: 2016_1 2016-01-01 147 285 151 272 159 253
#> DER.sos DER.pos DER.eos UD SD DD RD Greenup Maturity Senescence
#> <num> <num> <num> <num> <num> <num> <num> <num> <num> <num>
#> 1: 155 192 242 132 175 211 289 128 184 213
#> 2: 163 210 257 146 181 240 277 142 185 236
#> 3: 160 194 261 150 170 239 284 145 175 233
#> 4: 155 187 263 144 165 236 293 139 170 228
#> 5: 163 230 262 146 179 253 273 142 183 250
#> 6: 161 207 248 147 175 235 261 142 179 231
#> 7: 159 189 252 148 170 228 280 144 175 221
#> Dormancy
#> <num>
#> 1: 295
#> 2: 279
#> 3: 288
#> 4: 297
#> 5: 274
#> 6: 264
#> 7: 284
pheno <- l_pheno$doy %>% melt_list("meth")
# growing season dividing
plot_season(INPUT, brks, ylab = "EVI")
# Ipaper::write_fig({ }, "Figure4_seasons.pdf", 9, 4)
# fine curvefitting
g <- plot_curvefits(dfit, brks, title = NULL, cex = 1.5, ylab = "EVI", angle = 0)
grid::grid.newpage()
grid::grid.draw(g)
# Ipaper::write_fig(g, "Figure5_curvefitting.pdf", 8, 6, show = TRUE)
# extract phenology metrics, only the first 3 year showed at here
# write_fig({
l_pheno <- get_pheno(fit[1:7], method = "AG", TRS = TRS, IsPlot = TRUE, show.title = FALSE)
# }, "Figure6_phenology_metrics.pdf", 8, 6, show = TRUE)
TIMESAT
and phenopix
# library(ggplot2)
# library(ggnewscale)
# # on the top of `Figure7_predata...`
# d_comp = fread("data-raw/dat_Figure7_comparison_with_others-CA-NS6.csv")
# d_comp = merge(d[, .(date, t)], d_comp[, .(date, TIMESAT, phenopix)]) %>%
# merge(dfit[meth == "Beck", .(t, phenofit = ziter2)], by = "t") %>%
# melt(c("date", "t"), variable.name = "meth")
# labels = c("good", "marginal", "snow", "cloud")
# theme_set(theme_grey(base_size = 16))
# cols_line = c(phenofit = "red", TIMESAT = "blue", phenopix = "black")
# p <- ggplot(dfit, aes(t, y)) +
# geom_point(aes(color = QC_flag, fill = QC_flag, shape = QC_flag), size = 3) +
# scale_shape_manual(values = qc_shapes[labels], guide = guide_legend(order = 1)) +
# scale_color_manual(values = qc_colors[labels], guide = guide_legend(order = 1)) +
# scale_fill_manual(values = qc_colors[labels], guide = guide_legend(order = 1)) +
# new_scale_color() +
# geom_line(data = d_comp, aes(t, value, color = meth)) +
# # geom_line(data = d_comp[meth == "phenofit"], aes(t, value),
# # size = 1, show.legend = FALSE, color = "red") +
# scale_color_manual(values = cols_line, guide = guide_legend(order = 2)) +
# labs(x = "Time", y = "EVI") +
# theme(
# axis.title.x = element_text(margin = margin(t = 0, unit='cm')),
# # plot.margin = margin(t = 0, unit='cm'),
# legend.text = element_text(size = 13),
# legend.position = "bottom",
# legend.title = element_blank(),
# legend.margin = margin(t = -0.3, unit='cm'))
# p
# # write_fig(p, "Figure7_comparison_with_others.pdf", 10, 4, show = TRUE)