Local model functions f_L(t), f_C(t) and f_R(t) describe the VI variation in intervals around the left minima, the central maxima and the right minima.

Local model function are merged into global model function via merge_LocalModels() and Per J\"onsson et al. (2004; their Eq. 12), where cut-off function sharply drop from 1 to 0 in small intervals around (t_L + t_C)/2 and (t_C + t_R)/2.

$$ F(t)= \begin{cases} \alpha(t) f_{L}(t)+[1-\alpha(t)] f_{C}(t), t_{L}<t<t_{C} \\ \beta(t) f_{C}(t)+[1-\beta(t)] f_{R}(t), t_{C}<t<t_{R}\end{cases} $$

curvefits_LocalModel(INPUT, brks, options = list(), ...)

merge_LocalModels(fits)

Arguments

INPUT

A list object with the elements of 't', 'y', 'w', 'Tn' (optional) and 'ylu', returned by check_input.

brks

A list object with the elements of 'fit' and 'dt', returned by season or season_mov, which contains the growing season division information.

options

see section: options for fitting for details.

...

other parameters to curvefit()

fits

List objects returned by curvefits_LocalModel() (not curvefits()).

options for fitting

  • methods (default c('AG', 'Beck', 'Elmore', 'Zhang')``): Fine curve fitting methods, can be one or more of c('AG', 'Beck', 'Elmore', 'Zhang', 'Gu', 'Klos')`. Note that 'Gu' and 'Klos' are very slow.

  • iters (default 2): max iterations of fine fitting.

  • wFUN (default wTSM): Character or function, weights updating function of fine fitting function.

  • wmin (default 0.1): min weights in the weights updating procedure.

  • use.rough (default FALSE): Whether to use rough fitting smoothed time-series as input? If false, smoothed VI by rough fitting will be used for Phenological metrics extraction; If true, original input y will be used (rough fitting is used to divide growing seasons and update weights.

  • use.y0 (default TRUE): boolean. whether to use original y0 as the input of plot_input, note that not for curve fitting. y0 is the original value before the process of check_input.

  • nextend (default 2): Extend curve fitting window, until nextend good or marginal points are found in the previous and subsequent growing season.

  • maxExtendMonth (default 1): Search good or marginal good values in previous and subsequent maxExtendMonth period.

  • minExtendMonth (default 0.5): Extend period defined by nextend and maxExtendMonth, should be no shorter than minExtendMonth. When all points of the input time-series are good value, then the extending period will be too short. In that situation, we can't make sure the connection between different growing seasons is smoothing.

  • minPercValid: (default 0, not use). If the percentage of good- and marginal- quality points is less than minPercValid, curve fiting result is set to NA.

  • minT: (not use). If Tn not provided in INPUT, minT will not be used. minT use night temperature Tn to define backgroud value (days with Tn < minT treated as ungrowing season).

References

  1. Per J\"onsson, P., Eklundh, L., 2004. TIMESAT - A program for analyzing time-series of satellite sensor data. Comput. Geosci. 30, 833-845. doi:10.1016/j.cageo.2004.05.006 .

See also

Examples

if (FALSE) { # \dontrun{
library(phenofit)

data("CA_NS6")
d = CA_NS6

nptperyear <- 23
INPUT <- check_input(d$t, d$y, d$w, QC_flag = d$QC_flag,
     nptperyear = nptperyear, south = FALSE,
     maxgap = nptperyear/4, alpha = 0.02, wmin = 0.2)
# plot_input(INPUT)

# Rough fitting and growing season dividing
wFUN <- "wTSM"
brks2 <- season_mov(INPUT,
    options = list(
        rFUN = "smooth_wWHIT", wFUN = wFUN,
        r_min = 0.05, ypeak_min = 0.05,
        lambda = 10,
        verbose = FALSE
    ))
# plot_season(INPUT, brks2, d)

# Fine fitting
fits <- curvefits_LocalModel(
    INPUT, brks2,
    options = list(
        methods = c("AG", "Beck", "Elmore", "Zhang", "Gu"), #,"klos", "Gu"
        wFUN = wFUN,
        nextend = 2, maxExtendMonth = 2, minExtendMonth = 1, minPercValid = 0.2
    ),
    constrain = TRUE
)
# merge local model function into global model function
fits_merged = merge_LocalModels(fits) 

## Visualization ---------------------------------------------------------------
l_fitting = map(fits %>% guess_names, get_fitting) #%>% melt_list("period")

d_merged = get_fitting(fits_merged[[2]]) %>% cbind(type = "Merged")
d_raw = l_fitting[2:4] %>% set_names(c("Left", "Central", "Right")) %>%
    melt_list("type")
d_obs = d_raw[, .(t, y, QC_flag)] %>% unique()
d_fit = rbind(d_merged, d_raw)[meth == "Zhang"]

levs = c("Left", "Central", "Right", "Merged")
levs_new = glue("({letters[1:4]}) {levs}") %>% as.character()
d_fit$type %<>% factor(levs, levs_new)

p = ggplot(d_obs, aes(t, y)) +
    geom_point() +
    geom_line(data = d_fit, aes(t, ziter2, color = type)) +
    facet_wrap(~type) +
    labs(x = "Date", y = "EVI") +
    scale_x_date(date_labels = "%b %Y", expand = c(1, 1)*0.08) +
    theme_bw(base_size = 13) +
    theme(legend.position = "none",
          strip.text = element_text(size = 14))
p
} # }