plot curve fitting VI, gradient (first order difference D1), hessian (D2), curvature (k) and the change rate of curvature(der.k)
Fine curve fitting object fFITs()
returned by curvefit()
.
Which fine curve fitting method to be extracted?
whether to plot phenological metrics.
other parameters to curvature()
.
A data.frame with the columns of c('t', 'y')
library(phenofit)
# simulate vegetation time-series
fFUN = doubleLog.Beck
par = c( mn = 0.1 , mx = 0.7 , sos = 50 , rsp = 0.1 , eos = 250, rau = 0.1)
t <- seq(1, 365, 8)
tout <- seq(1, 365, 1)
y <- fFUN(par, t)
methods <- c("AG", "Beck", "Elmore", "Gu", "Zhang") # "Klos" too slow
fit <- curvefit(y, t, tout, methods)
# plot
plot(fit)