plot curve fitting VI, gradient (first order difference D1), hessian (D2), curvature (k) and the change rate of curvature(der.k)

# S3 method for class 'fFITs'
plot(x, method, show.pheno = TRUE, ...)

# S3 method for class 'fFIT'
plot(x, data, ...)

Arguments

x

Fine curve fitting object fFITs() returned by curvefit().

method

Which fine curve fitting method to be extracted?

show.pheno

whether to plot phenological metrics.

...

other parameters to curvature().

data

A data.frame with the columns of c('t', 'y')

See also

Examples

library(phenofit)
# simulate vegetation time-series
fFUN = doubleLog.Beck
par  = c( mn  = 0.1 , mx  = 0.7 , sos = 50 , rsp = 0.1 , eos = 250, rau = 0.1)

t    <- seq(1, 365, 8)
tout <- seq(1, 365, 1)
y <- fFUN(par, t)

methods <- c("AG", "Beck", "Elmore", "Gu", "Zhang") # "Klos" too slow
fit <- curvefit(y, t, tout, methods)

# plot
plot(fit)