Goodness-of-fitting (GOF) of fine curve fitting results.

get_GOF(x, ...)

# S3 method for class 'list'
get_GOF(x, ...)

# S3 method for class 'fFITs'
get_GOF(x, ...)

# S3 method for class 'fFIT'
get_GOF(x, data, ...)

Arguments

x

fFITs object returned by curvefit(), or list of fFITs objects

...

ignored.

data

A data.frame with the columns of c('t', 'y')

Value

  • meth: The name of fine curve fitting method

  • RMSE: Root Mean Square Error

  • NSE : Nash-Sutcliffe model efficiency coefficient

  • R : Pearson-Correlation

  • R2 : determined coefficient

  • pvalue: pvalue of R

  • n : The number of observations

References

  1. https://en.wikipedia.org/wiki/Nash-Sutcliffe_model_efficiency_coefficient

  2. https://en.wikipedia.org/wiki/Pearson_correlation_coefficient

See also

Examples

library(phenofit)
# simulate vegetation time-series
FUN = doubleLog.Beck
par  = c( mn  = 0.1, mx  = 0.7, sos = 50, rsp = 0.1, eos = 250, rau = 0.1)
t    <- seq(1, 365, 8)
tout <- seq(1, 365, 1)
y <- FUN(par, t)
methods <- c("AG", "Beck", "Elmore", "Gu", "Zhang") # "Klos" too slow
fit <- curvefit(y, t, tout, methods) # `fFITs` (fine-fitting) object 
fits <- list(`2001` = fit, `2002` = fit) # multiple years

l_param   <- get_param(fits)
d_GOF     <- get_GOF(fits)
d_fitting <- get_fitting(fits)
#> Warning: Unknown argument 'id' has been passed.
#> Warning: Unknown argument 'id' has been passed.
l_pheno   <- get_pheno(fits, "AG", IsPlot=TRUE)