Goodness-of-fitting (GOF) of fine curve fitting results.
get_GOF(x, ...)
# S3 method for class 'list'
get_GOF(x, ...)
# S3 method for class 'fFITs'
get_GOF(x, ...)
# S3 method for class 'fFIT'
get_GOF(x, data, ...)
fFITs
object returned by curvefit()
, or list of fFITs
objects
ignored.
A data.frame with the columns of c('t', 'y')
meth
: The name of fine curve fitting method
RMSE
: Root Mean Square Error
NSE
: Nash-Sutcliffe model efficiency coefficient
R
: Pearson-Correlation
R2
: determined coefficient
pvalue
: pvalue of R
n
: The number of observations
https://en.wikipedia.org/wiki/Nash-Sutcliffe_model_efficiency_coefficient
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
library(phenofit)
# simulate vegetation time-series
FUN = doubleLog.Beck
par = c( mn = 0.1, mx = 0.7, sos = 50, rsp = 0.1, eos = 250, rau = 0.1)
t <- seq(1, 365, 8)
tout <- seq(1, 365, 1)
y <- FUN(par, t)
methods <- c("AG", "Beck", "Elmore", "Gu", "Zhang") # "Klos" too slow
fit <- curvefit(y, t, tout, methods) # `fFITs` (fine-fitting) object
fits <- list(`2001` = fit, `2002` = fit) # multiple years
l_param <- get_param(fits)
d_GOF <- get_GOF(fits)
d_fitting <- get_fitting(fits)
#> Warning: Unknown argument 'id' has been passed.
#> Warning: Unknown argument 'id' has been passed.
l_pheno <- get_pheno(fits, "AG", IsPlot=TRUE)