Weighted Savitzky-Golay
smooth_wSG(
y,
w,
nptperyear,
ylu,
wFUN = wTSM,
iters = 2,
frame = floor(nptperyear/5) * 2 + 1,
d = 2,
...
)
Numeric vector, vegetation index time-series
(optional) Numeric vector, weights of y
. If not specified,
weights of all NA
values will be wmin
, the others will be 1.0.
Integer, number of images per year.
(optional) [low, high]
value of time-series y (curve fitting values
are constrained in the range of ylu.
weights updating function, can be one of 'wTSM', 'wChen' and 'wBisquare'.
How many times curve fitting is implemented.
Savitzky-Golay windows size
polynomial of degree. When d = 1, it becomes moving average.
Additional parameters are passed to wFUN
.
ws
: weights of every iteration
zs
: curve fittings of every iteration
Chen, J., J\"onsson, P., Tamura, M., Gu, Z., Matsushita, B., Eklundh, L.,
2004. A simple method for reconstructing a high-quality NDVI time-series
data set based on the Savitzky-Golay filter. Remote Sens. Environ. 91,
332-344. https://doi.org/10.1016/j.rse.2004.03.014.
https://en.wikipedia.org/wiki/Savitzky%E2%80%93Golay_filter
library(phenofit)
data("MOD13A1")
dt <- tidy_MOD13(MOD13A1$dt)
d <- dt[site == "AT-Neu", ]
l <- check_input(d$t, d$y, d$w, nptperyear=23)
r_wSG <- smooth_wSG(l$y, l$w, l$ylu, nptperyear = 23, iters = 2)